defense.clp
- class clp[source]
Bases:
defense
Data-free backdoor removal based on channel lipschitzness
basic structure:
config args, save_path, fix random seed
load the backdoor test data
load the backdoor attack model
- clp defense:
prune the model depend on the estimate of TAC
test the result and get ASR, ACC, RC with regard to the chosen threshold and interval
parser = argparse.ArgumentParser(description=sys.argv[0]) clp.add_arguments(parser) args = parser.parse_args() clp_method = clp(args) if "result_file" not in args.__dict__: args.result_file = 'one_epochs_debug_badnet_attack' elif args.result_file is None: args.result_file = 'one_epochs_debug_badnet_attack' result = clp_method.defense(args.result_file)
Note
@inproceedings{zheng2022data, title={Data-free backdoor removal based on channel lipschitzness}, author={Zheng, Runkai and Tang, Rongjun and Li, Jianze and Liu, Li}, booktitle={European Conference on Computer Vision}, pages={175–191}, year={2022}, organization={Springer}}
- Parameters:
args (baisc) – in the base class u (float): the threshold of channel lipschitzness u_min (float): the minimum value of u u_max (float): the maximum value of u u_num (float): the number of u